How do you find the derivative of y = 2x cos(x)y=2xcos(x)?
1 Answer
Jan 17, 2016
Explanation:
Use the product rule:
d/dx[f(x)g(x)]=f'(x)g(x)+f(x)g'(x)
Thus,
y'=cos(x)d/dx[2x]+2xd/dx[cos(x)]
y'=2cos(x)+2x(-sinx)
y'=2(cos(x)-xsin(x))