How do you find the derivative of y=sin^2x/cosx?

2 Answers
Jan 5, 2016

y'=(2cos^2xsinx+sin^3x)/cos^2x

Explanation:

Use the quotient rule, which states that for a function y=(f(x))/(g(x)),

y'=(f'(x)g(x)-g'(x)f(x))/(g(x))^2

We have:

f(x)=sin^2x
g(x)=cosx

To find f'(x), use the chain rule: d/dx(u^2)=2u*u'.

f'(x)=2sinxcosx
g'(x)=-sinx

Plug these into the quotient rule equation.

y'=(2sinxcosx(cosx)-(-sinx)sin^2x)/(cos^2x)

y'=(2cos^2xsinx+sin^3x)/cos^2x

This alternatively can be simplified as

y'=sin^3x/cos^2x+2sinx

Jan 5, 2016

frac{dy}{dx} = sinx(frac{1}{cos^2x}+1)

Explanation:

Note that sin^2x = 1 - cos^2x

Therefore,

y = frac{1 - cos^2x}{cosx}

= 1/cosx - cosx.

Using the Chain Rule,

frac{dy}{dx} = frac{d}{dx}(1/cosx) - frac{d}{dx}(cosx)

= frac{-1}{cos^2x}(-sinx) + sinx

= sinx(frac{1}{cos^2x}+1).