How do you find the derivative of y=sin^nthetay=sinnθ?

1 Answer
Mar 28, 2017

= n*sin^n theta* cot theta=nsinnθcotθ

Explanation:

y = sin ^n thetay=sinnθ

let say x = sin thetax=sinθ,
(dx)/(d theta) = cos thetadxdθ=cosθ

y = x^ny=xn
(dy)/(dx) = n*x^(n-1) = n sin^(n-1) thetadydx=nxn1=nsinn1θ

therefore,
(dy)/( d theta) =(dy)/(dx) * (dx)/(d theta)dydθ=dydxdxdθ

= n*sin^(n-1) theta* cos theta = n*sin^n theta / sin theta* cos theta =nsinn1θcosθ=nsinnθsinθcosθ

= n*sin^n theta * cot theta =nsinnθcotθ