How do you find the derivative of y = x^(ln x)?

1 Answer
Oct 14, 2016

Take the natural logarithm of both sides:

lny = ln(x^lnx)

lny = lnx(lnx)

1/y(dy/dx) = 1/x xx lnx + 1/x xx lnx

1/y(dy/dx) = lnx/x + lnx/x

1/y(dy/dx) = (2lnx)/x

dy/dx= ((2lnx)/x)/(1/y)

dy/dx= y xx (2lnx)/x

dy/dx = x^lnx xx (2lnx)/x

dy/dx = x^(lnx - 1) xx 2lnx

Hopefully this helps!