As the coefficient of #x^2# is -1 the graph is of form #nn#
Thus there is a determinable maximum.
Set #y=-(x-2)^2+1#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the vertex")#
The given function is in the form #y=a(x+b/(2a))^2+k# which is the vertex form (completing the square). Thus with a slight modification the vertex may read off it directly.
#x_("vertex")=(-1)xxb/(2a)->(-1)xx(-2)=+2#
#y_("vertex")=k=1#
#color(green)(" Vertex"->(x,y)=(2,1)) #
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine x-intercepts")#
These occur at #y=0# so we have:
#y=0=-(x-2)^2+1#
Add #(x+2)^2# to both sides
#+(x-2)^2=1#
Square root both sides
#x-2 =+-1#
Add 2 to both sides
#color(green)(x=2+-1->x=1 and 3)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine y-intercept")#
Set #x=0# giving
#y_("intercept")=-(0-2)^2+1#
#color(green)( y_("intercept")=-4+1=-3)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine where the function is increasing")#
As the graph form is #nn# then #f(x)# is increasing to the left of the maximum at #(2,1)#. So increasing for #x<2#
It is neither increasing or decreasing at #x=2#