How do you find the equation in slope-intercept form of the line that is perpendicular to AB and passes through the midpoint of AB. Let A = (-6,2) and B = (4,-10)?

1 Answer
Apr 9, 2017

#y=5/6x-19/6#

Explanation:

The mid point is the mean value as you read left to right on the x-axis.

Point A #->P_a->(x_a,y_a)=(-6,2)#
Point B #->P_b->(x_b,y_b)=(4,-10)#

Let the mean point be #P_m->(x_m,y_m)#
Let the gradient of the line between #P_a and P_b" be "m#

Note that the gradient of the perpendicular line will be #-1/m#

We read from #x_a" to "x_b#

#color(blue)("Determine the mid point")#

#x_m=(x_b+x_a)/2=(4+(-6))/2=-1#

#y_m->(y_b+y_a)/2=( 2+(-10))/2=-4#

#P_m->(x_m,y_m)=(-1,-4)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the gradient (slope) of the perpendicular line")#

#m=("change in y")/("change in x")-> (y_b-y_a)/(x_b-x_a) = (-10-2)/(4-(-6))= (-12)/10 = -6/5#

Thus #-1/m=+5/6#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the equation of the perpendicular line")#
Found that #y=-1/m x+c# is:

#y=5/6x+c" ".................Equation(1)#

We know that this passes through the point
#P_m->(x_m,y_m)=(-1,-4)#

So by substitution into #Equation(1)# we have:

#-4=5/6(-1)+c#

#c=-4+5/6 = -3 1/6=-19/6# giving:

#y=5/6x-19/6#
Tony B