How do you find the equation of the ellipse that passes through points (6,4) and (-8,3) ?
1 Answer
x^2/100+y^2/25=1x2100+y225=1
Explanation:
Two Points are given. The center is not given.
We shall take
The equation of the ellipse is -
(x-h)^2/a^2+(y-k)^2/b^2=1(x−h)2a2+(y−k)2b2=1
Plug in the values of center
(x-0)^2/a^2+(y-0)^2/b^2=1(x−0)2a2+(y−0)2b2=1
This is the equation of the ellipse having center as
x^2/a^2+y^2/b^2=1x2a2+y2b2=1
The given ellipse passes through points
First plugin the values
6^2/a^2+4^2/b^2=162a2+42b2=1
36/a^2+16/b^2=136a2+16b2=1 ------------(1)
Next Plugin the values
(-8)^2/a^2+3^2/b^2=1(−8)2a2+32b2=1
64/a^2+9/b^2=164a2+9b2=1 -----------------(2)
36/a^2+16/b^2=136a2+16b2=1 ------------(1)
64/a^2+9/b^2=164a2+9b2=1 -----------------(2)
We shall rewrite the equations as -
36 1/a^2+16 1/b^2=1361a2+161b2=1 ------------(1)
64 1/a^2+9 1/b^2=1641a2+91b2=1 -----------------(2)
Let
Then these two equations become
36m+16n =136m+16n=1 ------------(1)
64m+9n=164m+9n=1 -----------------(2)
Now we can easily solve
36m+16n =136m+16n=1 ------------(1)xx9×9
64m+9n=164m+9n=1 -----------------(2)xx16×16
324m+144n =9324m+144n=9 ------------(1)
1024m+144n=161024m+144n=16 -----------------(2)
Subtract (2) from (1)
-700m=-7−700m=−7
m=(-7)/(-700)=1/100m=−7−700=1100
Plugin this in any one of the euations
36 * 1/100+16n =136⋅1100+16n=1
16n=1-36/100=(100-36)/100=16/2516n=1−36100=100−36100=1625
n=16/25*1/16=1/25n=1625⋅116=125
m=1/a^2=1/100m=1a2=1100
n=1/b^2=1/25n=1b2=125
x^2/a^2+y^2/b^2=1x2a2+y2b2=1
This equation can also be written as -
1/a^2*x^2+1/b^2*y^2=11a2⋅x2+1b2⋅y2=1
Now you can easily plugin the values of
1/100*x^2+1/25*y^2=11100⋅x2+125⋅y2=1
x^2/100+y^2/25=1x2100+y225=1