How do you find the equation of the ellipse that passes through points (6,4) and (-8,3) ?

1 Answer
Oct 13, 2016

x^2/100+y^2/25=1x2100+y225=1

Explanation:

Two Points are given. The center is not given.
We shall take (0, 0)(0,0) as the center.

The equation of the ellipse is -

(x-h)^2/a^2+(y-k)^2/b^2=1(xh)2a2+(yk)2b2=1

Plug in the values of center

(x-0)^2/a^2+(y-0)^2/b^2=1(x0)2a2+(y0)2b2=1

This is the equation of the ellipse having center as(0, 0)(0,0)

x^2/a^2+y^2/b^2=1x2a2+y2b2=1

The given ellipse passes through points (6, 4); (-8, 3)(6,4);(8,3)

First plugin the values (6, 4)(6,4)

6^2/a^2+4^2/b^2=162a2+42b2=1
36/a^2+16/b^2=136a2+16b2=1 ------------(1)

Next Plugin the values (-8, 3)(8,3)

(-8)^2/a^2+3^2/b^2=1(8)2a2+32b2=1
64/a^2+9/b^2=164a2+9b2=1 -----------------(2)

36/a^2+16/b^2=136a2+16b2=1 ------------(1)
64/a^2+9/b^2=164a2+9b2=1 -----------------(2)

We shall rewrite the equations as -

36 1/a^2+16 1/b^2=1361a2+161b2=1 ------------(1)
64 1/a^2+9 1/b^2=1641a2+91b2=1 -----------------(2)

Let 1/a^2=m ; 1/b^2=n1a2=m;1b2=n

Then these two equations become

36m+16n =136m+16n=1 ------------(1)
64m+9n=164m+9n=1 -----------------(2)

Now we can easily solve

36m+16n =136m+16n=1 ------------(1) xx9×9
64m+9n=164m+9n=1 -----------------(2)xx16×16

324m+144n =9324m+144n=9 ------------(1)
1024m+144n=161024m+144n=16 -----------------(2)

Subtract (2) from (1)

-700m=-7700m=7
m=(-7)/(-700)=1/100m=7700=1100

Plugin this in any one of the euations

36 * 1/100+16n =1361100+16n=1

16n=1-36/100=(100-36)/100=16/2516n=136100=10036100=1625
n=16/25*1/16=1/25n=1625116=125

m=1/a^2=1/100m=1a2=1100
n=1/b^2=1/25n=1b2=125

x^2/a^2+y^2/b^2=1x2a2+y2b2=1

This equation can also be written as -

1/a^2*x^2+1/b^2*y^2=11a2x2+1b2y2=1

Now you can easily plugin the values of 1/a^2 ; 1/b^21a2;1b2

1/100*x^2+1/25*y^2=11100x2+125y2=1

x^2/100+y^2/25=1x2100+y225=1

enter image source here