The polynomial function is
#f(x)=-2x^3+6x^2+18x-18#
This function is defined, continuous and derivable on #RR#
The first derivative is
#f'(x)=-6x^2+12x+18#
The critical points are when #f'(x)=0#
#-6(x^2-2x-3)=0#
#(x+1)(x-3)=0#
#f'(x)=-(x+1)(x-3)#
Therefore,
#x=-1# and #x=3#
We can make a variation chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-1##color(white)(aaaa)##3##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x+1##color(white)(aaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-3##color(white)(aaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f'(x)##color(white)(aaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaa)##↘##color(white)(aaaa)##↗##color(white)(aaa)##↘#
The second derivative is
#f''(x)=-12x+12#
#f''(-1)=12+12=24#, #=>#, this is a relative minimum as #f''(-1)>0#
#f''(3)=-12*3+12=-24#, #=>#, this is a relative maximum as #f''(-1)<0#
graph{-2x^3+6x^2+18x-18 [-74.1, 74.1, -37.03, 37]}