How do you find the exact relative maximum and minimum of the polynomial function of 2x3−23x2+78x−72?
1 Answer
Oct 11, 2016
There is a minimum at
There is a maximum at
Explanation:
Given -
y=2x3−23x2+78x−72
dydx=6x2−46x+78
d2ydx2=12x−46
dydx=0⇒6x2−46x+78=0
x=−b±√b2−4ac2×a
x=−(−46)±√(−462)−(4×6×78)2×6
x=46±√2116−18722×6
x=46±√24412
x=46±15.6212
x=46+15.6212=61.6212=5.135
x=46−15.6212=30.3812=2.531
At
d2ydx2=12(5.135)−46=61.62−46=15.62>0
There is a minimum at
At
d2ydx2=12(2.531)−46=30.37−46=−15.628<0
There is a maximum at