How do you find the exact value of tan(pi/3)tan(π3)?

1 Answer
Mar 18, 2018

The value of tan(pi/3)tan(π3) is sqrt33.

Explanation:

We can use this fundamental trigonometric identity:

tantheta=sintheta/costhetatanθ=sinθcosθ

Here's a reference triangle with our anglethetaθ:

![https://www.geogebra.org/geometry](useruploads.socratic.org)

Since we know sin(pi/3)sin(π3) is sqrt3/232 and cos(pi/3)cos(π3) is 1/212, we can use the previously stated identity to figure out the value of tan(pi/3)tan(π3):

tan(pi/3)=(quadsin(pi/3)quad)/cos(pi/3)

color(white)(tan(pi/3))=(quadsqrt3/2quad)/(1/2)

color(white)(tan(pi/3))=sqrt3/2*2/1

color(white)(tan(pi/3))=sqrt3/color(red)cancelcolor(black)2*color(red)cancelcolor(black)2/1

color(white)(tan(pi/3))=sqrt3/1*1/1

color(white)(tan(pi/3))=sqrt3/1*1

color(white)(tan(pi/3))=sqrt3/1

color(white)(tan(pi/3))=sqrt3

That's the value of tan(pi/3). Hope this helped!