How do you find the exact values of cos(2pi/5)cos(3pi/5)-sin(2pi/5)sin(3pi/5) using the half angle formula?

1 Answer
Aug 30, 2015

color(red)(cos((2π)/5)cos((3π)/5)-sin((2π)/5)sin((3π)/5) =-1)

Explanation:

It's easier to use the cosine sum identity.

cos(A+B)= cosAcosB-sinAsinB

cosAcosB-sinAsinB = cos(A+B)

cos((2π)/5)cos((3π)/5)-sin((2π)/5)sin((3π)/5) = cos((2π)/5+(3π)/5)= cos((5π)/5)=cosπ

cos((2π)/5)cos((3π)/5)-sin((2π)/5)sin((3π)/5) =-1