How do you find the exact values of sin 165° using the half angle formula?

1 Answer
Aug 30, 2015

#color(red)(sin(165) =sqrt(2–sqrt3)/2)#

Explanation:

The sine half-angle formula is

#sin(x/2) = ±sqrt((1 − cos x) / 2)#

The sign is positive if #x/2# is in the first or second quadrant and negative if #x/2# is in the third or fourth quadrant.

#sin165 = sin(330/2) = sqrt((1–cos 330)/2)#

#sin165= sqrt((1–cos(360-330)) / 2) = sqrt((1–cos30)/2)#

#sin165= sqrt((1–(sqrt3)/2)/2)= sqrt((2-sqrt3)/4)#

#sin165 =sqrt(2–sqrt3)/2#