How do you find the exact values of #sin(u/2), cos(u/2), tan(u/2)# using the half angle formulas given #cscu=-5/3, pi<u<(3pi)/2#?

1 Answer
May 24, 2017

#sin (u/2) = 3sqrt10/10#
#cos (u/2) = - sqrt10/10#
#tan (u/2) = - 3#

Explanation:

#1/(sin u) = - 5/3# --> #sin u = - 3/5#
#cos u = 1 - sin^2 u = 1 - 9/25 = 16/25# --> #cos u = +- 4/5#
#cos u = - 4/5# because u is in Quadrant 3.
Use trig identity:
#2sin^2 a = 1 - sin 2a#.
In this case:
#2sin^2 (u/2) = 1 - cos u = 1 + 4/5 = 9/5#
#sin^2 (u/2) = 9/10#
#sin (u/2) = +- 3/sqrt10#
#sin (u/2) = 3/sqrt10# --> because #u/2# is in Quadrant 2
The same way -->
2cos^2 (u/2) = 1 + cos u = 1 - 4/5 = 1/5
#cos (u/2) = +- 1/sqrt10#
#cos (u/2) = - 1/sqrt10# --> because #u/2# is in Quadrant 2
#tan (u/2) = sin/(cos) = 3/-1 = - 3#