How do you find the exact values of #sin(u/2), cos(u/2), tan(u/2)# using the half angle formulas given #secu=-7/2, pi/2<u<pi#?

1 Answer
Feb 25, 2018

See below.

Explanation:

Identities:

#color(red)bb(secx=1/cosx)#

#color(red)bb(sin(x/2)/cos(x/2)=tan(x/2))#

#color(red)bb(cos(x/2)=sqrt(1/2(1+cosx)))#

#color(red)bb(sin(x/2)=sqrt(1/2(1-cosx)))#

#sec(u)=-7/2=>1/cos(u)=-7/2=>cos(u)=-2/7#

#sin(u/2)=sqrt(1/2(1-(-2/7)))=sqrt((9/14))=3/sqrt(14)=color(blue)((3sqrt(14))/14)#

#cos(u/2)=sqrt(1/2(1+(-2/7)))=sqrt(5/14)=color(blue)((sqrt(70))/14)#

#tan(u/2)=((3sqrt(14))/14)/(-(sqrt(70))/14)=(3sqrt(14))/(sqrt(70))=color(blue)((3sqrt(5))/5)#

Note the signs:

If #u# is in quadrant II

Then:

#u/2# is in quadrant I