How do you find the exact values of sin(u/2), cos(u/2), tan(u/2)sin(u2),cos(u2),tan(u2) using the half angle formulas given secu=-7/2, pi/2<u<pisecu=72,π2<u<π?

1 Answer
Feb 25, 2018

See below.

Explanation:

Identities:

color(red)bb(secx=1/cosx)secx=1cosx

color(red)bb(sin(x/2)/cos(x/2)=tan(x/2))sin(x2)cos(x2)=tan(x2)

color(red)bb(cos(x/2)=sqrt(1/2(1+cosx)))cos(x2)=12(1+cosx)

color(red)bb(sin(x/2)=sqrt(1/2(1-cosx)))

sec(u)=-7/2=>1/cos(u)=-7/2=>cos(u)=-2/7

sin(u/2)=sqrt(1/2(1-(-2/7)))=sqrt((9/14))=3/sqrt(14)=color(blue)((3sqrt(14))/14)

cos(u/2)=sqrt(1/2(1+(-2/7)))=sqrt(5/14)=color(blue)((sqrt(70))/14)

tan(u/2)=((3sqrt(14))/14)/(-(sqrt(70))/14)=(3sqrt(14))/(sqrt(70))=color(blue)((3sqrt(5))/5)

Note the signs:

If u is in quadrant II

Then:

u/2 is in quadrant I