How do you find the exact values of tan(5pi/12) & sin(5pi/12) using the half angle formula?

1 Answer
Jul 16, 2015

Find tan ((5pi)/12) and sin ((5pi)/12)
Answer: +- (2 +- sqrt3) and +- sqrt(2 + sqrt3)/2

Explanation:

Call tan ((5pi/12) = t.
Use trig identity: tan 2a = (2tan a)/(1 - tan^2 a)
tan ((10pi)/12) = tan ((5pi)/6) = - 1/(sqrt3) = (2t)/(1 - t^2)
t^2 - 2sqrt3t - 1 = 0

D = d^2 = b^2 - 4ac = 12 + 4 = 16 --> d = +- 4

t = tan ((5pi)/12) = (2sqrt3)/2 +- 4/2 = 2 +- sqrt3

Call sin((5pi)/12) = sin y
Use trig identity: cos 2a = 1 - 2sin^2 a
cos ((10pi)/12) = cos ((5pi)/6) = (-sqrt3)/2 = 1 - 2sin^2 y
sin^2 y = (2 + sqrt3)/4
sin y = sin ((5pi)/12) = +- sqrt(2 + sqrt3)/2