Let's use the chain rule, by naming #u=(sinx)/(1+cosx)#.
The chain rule states that
#(dy)/(dx)=(dy)/(du)(du)/(dx)#
Thus,
#(dy)/(du)=2u#
#(du)/(dx)# - here, we have to apply quocient rule, which states that
Be #y=(f(x))/(g(x))#, #(dy)/(dx)=(f'(x)g(x)-f(x)g'(x))/(f(x))^2#
#(du)/(dx)=(((cosx)(1+cosx))-(sinx)(-sinx))/(1+cosx)^2#
#(du)/(dx)=((cos^2x+cosx)+sin^2x)/(1+cosx)^2#
#(du)/(dx)=(color(green)(cos^2x+sin^2x)+cosx)/(1+cosx)^2#
#(du)/(dx)=cancel(1+cosx)/(1+cosx)^cancel2#
#(du)/(dx)=1/(1+cosx)#
Now, combining #(du)/(dx)# and #(dy)/(du)#:
#(dy)/(dx)=(2u)(1/(1+cosx))#
#(dy)/(dx)=2(sinx/(1+cosx))(1/(1+cosx))#
#(dy)/(dx)=color(green)((2sinx)/(1+cosx)^2)#