For a point of inflection g:
f''(g)=0
f'''(g)ne0
f(x)=(x+1)/(x^2+1)
Using the Quotient rule:
f'(x)=(1*(x^2+1)-(x+1)(2x))/(x^2+1)^2
=(x^2+1-2x^2-2x)/(x^2+1)^2
=(-x^2-2x+1)/(x^2+1)^2
=-((x+1)^2-2)/(x^2+1)^2
Again, using the Quotient rule:
f''(x)=-(2*(x+1)*(x^2+1)^2-((x+1)^2-2)(2*2x(x^2+1)))/(x^2+1)^4
=-((2x+2)* (x^2+1)^2-4x(x+1)^2(x^2+1)-4x(x^2+1))/(x^2+1)^4
=-((2x+2)*(x^2+1)-4x(x+1)^2-4x)/(x^2+1)^3
f''(x)=0
0=-((2x+2) * (x^2+1)-4x(x+1)^2-4x)/(x^2+1)^3|* (x^2+1)^3
0=-(2x+2) * (x^2+1)-4x(x+1)^2-4x
0=-2x^3+2x-2x^2-2+4x^3+8x^2-4x-4x
0=2x^3+6x^2-6x-2
x_1=1
x_2=-2-sqrt(3)
x_3=sqrt(3)-2
Again, using the Quotient rule:
f'''(x)=-(6(x^4+4x^3+4x^2-4x-1))/(x^2+1)^4
f'''(1)=-3/2
f'''(-2-sqrt(3))=3/32*(4*sqrt(3)-7)~~-0.0067
f'''(-2+sqrt(3))=-3/32*(4*sqrt(3)+7)~~-1.31