How do you find the inflection point of (x+1)/(x^(2)+1)x+1x2+1?

2 Answers
Jun 3, 2018

We get the Points
P_1(1;1),P_2(-2-sqrt(3),1/4*(1-sqrt(3))),P_3(-2+sqrt(3),1/4(1+sqrt(3)))P1(1;1),P2(23,14(13)),P3(2+3,14(1+3))

Explanation:

By the Quotient rule we get
f'(x)=(-x^2-2x+1)/(x^2+1)^2
f''(x)=(2x^3+6x^2-6x+2)/(x^2+1)^3
so we have to solve
2(x^3+3x^2-3x-1)=0
This is
(x-1)(x^2+4x+1)=0
Solutions are
x_1=1
x_2=-2-sqrt(3)
x_3=-2+sqrt(3)

Jun 3, 2018

x_1=1
x_2=-2-sqrt(3)
x_3=-2+sqrt(3)

Explanation:

For a point of inflection g:
f''(g)=0
f'''(g)ne0

f(x)=(x+1)/(x^2+1)

Using the Quotient rule:
f'(x)=(1*(x^2+1)-(x+1)(2x))/(x^2+1)^2
=(x^2+1-2x^2-2x)/(x^2+1)^2
=(-x^2-2x+1)/(x^2+1)^2
=-((x+1)^2-2)/(x^2+1)^2

Again, using the Quotient rule:
f''(x)=-(2*(x+1)*(x^2+1)^2-((x+1)^2-2)(2*2x(x^2+1)))/(x^2+1)^4
=-((2x+2)* (x^2+1)^2-4x(x+1)^2(x^2+1)-4x(x^2+1))/(x^2+1)^4
=-((2x+2)*(x^2+1)-4x(x+1)^2-4x)/(x^2+1)^3

f''(x)=0
0=-((2x+2) * (x^2+1)-4x(x+1)^2-4x)/(x^2+1)^3|* (x^2+1)^3
0=-(2x+2) * (x^2+1)-4x(x+1)^2-4x
0=-2x^3+2x-2x^2-2+4x^3+8x^2-4x-4x
0=2x^3+6x^2-6x-2

x_1=1
x_2=-2-sqrt(3)
x_3=sqrt(3)-2

Again, using the Quotient rule:
f'''(x)=-(6(x^4+4x^3+4x^2-4x-1))/(x^2+1)^4
f'''(1)=-3/2
f'''(-2-sqrt(3))=3/32*(4*sqrt(3)-7)~~-0.0067
f'''(-2+sqrt(3))=-3/32*(4*sqrt(3)+7)~~-1.31