How do you find the intersection of r = 1 - cos(theta)r=1cos(θ), r^2 = 4cos(theta)r2=4cos(θ)?

1 Answer
Nov 23, 2016

( 2 (sqrt2 - 1), cos^(-1) ( 3 - sqrt 2 ) ) = ( 0.8284, 80.12^o )(2(21),cos1(32))=(0.8284,80.12o)

Explanation:

r > 0.

Eliminate r.

r^2=(1-cos theta )^2=4 cos thetar2=(1cosθ)2=4cosθ

Solving,

cos theta=3-2sqrt2 to theta =arc cos (3-2sqrt2) to r =2((sqrt2-1)cosθ=322θ=arccos(322)r=2((21).

So, the common point is

( 2 (sqrt2 - 1), cos^(-1) ( 3 - sqrt 2 ) ) = ( 0.8284, 80.12^o )(2(21),cos1(32))=(0.8284,80.12o)