How do you find the LCM of #(x^2-8x+7),(x^2+x-2)#?

1 Answer
Nov 1, 2017

LCM(#x^2-8x+7, x^2+x-2)=color(red)(x^3-6x^2-9x+14)#

Explanation:

Factoring the two given polynomials:
#underbrace(x^2-8x+7)color(white)("xxxxxx")underbrace(x^2+x-2)#
#(x-7)(x-1)color(white)("xxx")(x+2)(x-1)#

We notice the duplicate factor #(x-1)#, so one copy of this can be eliminated.

LCM #=(x-7)(x-1)(x+2)#

#color(white)("XXX")=(x^2-8x+7)(x+2)#

#color(white)("XXX")=x^3-8x^2+7x#
#color(white)("XXX")ul(color(white)(=x^3-)2x^2-16x+14)#
#color(white)("XXX")=x^3-6x^2-9x+14#