How do you find the maximum, minimum and inflection points and concavity for the function g(x) = 170 + 8x^3 + x^4g(x)=170+8x3+x4?

1 Answer

Point of minima x=-6x=6, points of inflection x=0, x=-4x=0,x=4 & the function is concave in x\in(-6, 0)x(6,0)

Explanation:

The given function:

g(x)=170+8x^3+x^4g(x)=170+8x3+x4

g'(x)=24x^2+4x^3

g''(x)=48x+12x^2

For mamima or minima we have

g'(x)=0

24x^2+4x^3=0

4x^2(6+x)=0

x=0, -6

Now, g''(0)=48(0)+12(0)^2=0

hence, x=0 is a point of inflection

Now, g''(-6)=48(-6)+12(-6)^2

=144>0

hence, x=-6 is a point of maxima

Now, for points of inflection we have

g''(x)=0

48x+12x^2=0

12x(4+x)=0

x=0, -4

The curve will be concave iff

g'(x)<0

24x^2+4x^3<0

4x^2(6+x)<0

x\in(-6, 0)

Thus, the graph will be concave for x\in(-6, 0)