How do you find the #n#-th derivative of a power series?

1 Answer
Sep 12, 2014

If #f(x)=sum_{k=0}^infty c_kx^k#, then
#f^{(n)}(x)=sum_{k=n}^infty k(k-1)(k-2)cdots(k-n+1)c_kx^{k-n}#

By taking the derivative term by term,
#f'(x)=sum_{k=1}^infty kc_kx^{k-1}#
#f''(x)=sum_{k=2}^infty k(k-1)c_kx^{k-2}#
#f'''(x)=sum_{k=3}^infty k(k-1)(k-2)c_kx^{k-3}#
.
.
.
#f^{(n)}(x)=sum_{k=n}^infty k(k-1)(k-2)cdots(k-n+1)c_kx^{k-n}#