How do you use differentiation to find a power series representation for #f(x)=1/(1+x)^2#?

1 Answer
Apr 3, 2015

First, note that #\frac{1}{(1+x)^2}=(1+x)^(-2)=\frac{d}{dx}(-(1+x)^{-1})=\frac{d}{dx}(-\frac{1}{1-(-x)})#.

Now use the power series expansion #\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots#, which converges for #|x|<1#, multiply everything by #-1#, and replace all the "#x#'s" with "#-x#'s to get

#-\frac{1}{1-(-x)}=-1+x-x^2+x^3-x^4+\cdots#, which converges for #|-x|<1 \Leftrightarrow |x|<1#.

Finally, differentiate this term-by-term (which is justified in the interior of the interval of convergence) to get

#\frac{1}{(1+x)^{2}}=\frac{d}{dx}(-1+x-x^2+x^3-x^4+\cdots)#

#=1-2x+3x^{2}-4x^{3}+\cdots#.

This also converges for #|x|<1#.