How do you find the number of possible positive real zeros and negative zeros then determine the rational zeros given f(x)=x^4-5x^2+4?

1 Answer
Mar 5, 2017

(1) : f(x)" has two +ve zeroes, namely, "2 and 1;

(2) :" two "-ve "zeroes, "-2, and, -1:

(3) :" four rational zeroes, "+-2, +-1.

Explanation:

Let x^2=y in f(x)=x^4-5x^2+4=y^2-5y+4.

:. f(x)=0 rArr y^2-5y+4=0.

:. ul(y^2-4y)-ul(y+4)=0.

:. y(y-4)-1(y-4)=0.

:. (y-4)(y-1)=0.

:. (x^2-4)(x^2-1)=0, ...........[because, y=x^2]

:. (x+2)(x-2)(x+1)(x-1)=0.

:. x=-2, 2, -1, and, 1.

Thus, (1) : f(x)" has two +ve zeroes, namely, "2 and 1;

(2) :" two "-ve "zeroes, "-2, and, -1:

(3) :" four rational zeroes, "+-2, +-1.

Enjoy Maths.!