How do you find the product #2j(7j^2k^2+jk^2+5k)-9k(-2j^2k^2+2k^2+3j)#?

1 Answer
Jan 21, 2018

See a solution process below:

Explanation:

First, eliminate the parenthesis by multiplying each term within the parenthesis by the term outside the parenthesis:

#color(red)(2j)(7j^2k^2 + jk^2 + 5k) - color(blue)(9k)(-2j^2k^2 + 2k^2 + 3j) =>#

#(color(red)(2j) xx 7j^2k^2) + (color(red)(2j) xx jk^2) + (color(red)(2j) xx 5k) + (-color(blue)(9k) xx -2j^2k^2) + (-color(blue)(9k) xx 2k^2) + (-color(blue)(9k) xx 3j) =>#

#14j^3k^2 + 2j^2k^2 + 10jk + 18j^2k^3 + (-18k^3) + (-27jk) =>#

#14j^3k^2 + 2j^2k^2 + 10jk + 18j^2k^3 - 18k^3 - 27jk#

Next, group and combine like terms:

#14j^3k^2 + 2j^2k^2 + 10jk - 27jk + 18j^2k^3 - 18k^3#

#14j^3k^2 + 2j^2k^2 + (10 - 27)jk + 18j^2k^3 - 18k^3#

#14j^3k^2 + 2j^2k^2 + (-17)jk + 18j^2k^3 - 18k^3#

#14j^3k^2 + 2j^2k^2 - 17jk + 18j^2k^3 - 18k^3#