How do you find the quotient of #-150/10#?

1 Answer

#-15#

Explanation:

One way we can do this is to see that #150=15xx10# and that #10=1xx10#:

#-150/10=-(15xx10)/(1xx10)#

Remember that with fractions, when multiplying, we multiply the top together and the bottom together, like this:

#-15/1xx10/10=(15xx10)/(1xx10)#

and so we can do that backwards too:

#-150/10=-(15xx10)/(1xx10)=-15/1xx10/10#

Notice we have #10/10#. When we divide something by itself, that equals 1. And so:

#-150/10=-(15xx10)/(1xx10)=-15/1xx10/10=-15/1xx1#

Anything multiplied by 1 equals itself:

#-150/10=-(15xx10)/(1xx10)=-15/1xx10/10=-15/1xx1=-15/1#

And anything divided by 1 also equals itself:

#-150/10=-(15xx10)/(1xx10)=-15/1xx10/10=-15/1xx1=-15/1=-15#