How do you find the quotient of (x^3-43x+42) divided by (x^2+6x-7)?
1 Answer
Jan 17, 2018
Explanation:
"factorise numerator/denominator"factorise numerator/denominator
x^3-43x+42x3−43x+42
=x^2(x-1)+x(x-1)-42(x-1)=x2(x−1)+x(x−1)−42(x−1)
=(x-1)(x^2+x-42)=(x-1)(x+7)(x-6)=(x−1)(x2+x−42)=(x−1)(x+7)(x−6)
x^2+6x+7=(x+7)(x-1)x2+6x+7=(x+7)(x−1)
rArr(x^3-43x+42)/(x^2+6x-7)⇒x3−43x+42x2+6x−7
=(cancel((x-1))cancel((x+7))(x-6))/(cancel((x+7))cancel((x-1)))=x-6