How do you find the range and domain of (12)(arctanx)?

1 Answer
Apr 11, 2018

Domain : x(,)
Range: f(x)(π4,π4)

Explanation:

f(x)=12tan1x

Domain of tan1x is any real value i.e x(,)

Range of tan1x is f(x)(π2,π2)

Domain of (12)tan1x is x(,)

Range of (12)tan1x is f(x)(π4,π4)

graph{1/2*arctan(x) [-10, 10, -5, 5]} [Ans]