How do you find the real or imaginary solutions of the equation 6x^2+13x-5=06x2+13x5=0?

1 Answer
Nov 28, 2016

The solutions are S={1/3,-5/2}S={13,52}

Explanation:

The simultaneous equations ax^2+bx+c=0ax2+bx+c=0

Our equation is 6x^2+13x-5=06x2+13x5=0

We calculate the determinant,

Delta=b^2-4ac

Delta=13^2-4*6*-5=289

Delta>0, so we have 2 real roots

So,

x=(-b+-sqrtDelta)/(2a)

=(-13+-sqrt289)/12

=(-13+-17)/12

So, x_1=-30/12=-5/2

and x_2=4/12=1/3