How do you find the rectangular coordinates given (3, pi/2)(3,π2)?

1 Answer

(0, 3)(0,3)

Explanation:

The rectangular or cartesian coordinates (x, y)(x,y) of the given point (3, \pi/2)\equiv(r, \theta)(3,π2)(r,θ) are given as

x=r\cos\theta=3 \cos (\pi/2)=0x=rcosθ=3cos(π2)=0

y=r\sin\theta=3 \sin (\pi/2)=3y=rsinθ=3sin(π2)=3

\therefore (x, y)\equiv(0, 3)