First we find #d/dxtanx#.
We know that #tanx=sinx/cosx#
So we can use the quotient rule to solve for this:
#d/dx(sinx/cosx)=(cosxd/dx(sinx)-sinxd/dx(cosx))/cos^2x#
#color(white)(d/dx(sinx/cosx))=(cosx(cosx)-sinx(-sinx))/cos^2x#
#color(white)(d/dx(sinx/cosx))=(cos^2x+sin^2x)/(cos^2x)=1/cos^2x#
#d/dx(sinx/cosx)=d/dxtanx=sec^2x#
Now for #d^2/dx^2tanx#, or #d/dxsec^2x#
Which we can write as #d/dx(secx)^2#, which gives:
#2secx(secxtanx)#, using the chain rule, where we compute #d/(du)u^2# and #d/dxsecx#.
Which gives:
#2sec^2xtanx#
So:
#d^2/dx^2tanx=2sec^2xtanx#