How do you find the square root of an imaginary number of the form a+bi?
1 Answer
Alternatively, solve without using trigonometry to find that the square roots of
#+-((sqrt((sqrt(a^2+b^2)+a)/2)) + (b/abs(b) sqrt((sqrt(a^2+b^2)-a)/2))i)#
Explanation:
Suppose
How do we solve for
#(c+di)^2 = c^2+2cdi + d^2i^2 = (c^2-d^2) + (2cd)i#
So we want to solve:
#c^2-d^2 = a#
#2cd = b#
From the second of these, we find:
#d = b/(2c)#
So:
#d^2 = b^2/(4c^2)#
Substituting this in the first equation we get:
#c^2-b^2/(4c^2) = a#
Multiply through by
#4(c^2)^2-b^2 = 4ac^2#
Subtract
#4(c^2)^2-4a(c^2)-b^2 = 0#
From the quadratic formula, we find:
#c^2 = (4a+-sqrt((4a)^2+16b^2))/8 =(a+-sqrt(a^2+b^2))/2#
For
#c^2 = (a+sqrt(a^2+b^2))/2#
Hence:
#c = +-sqrt((sqrt(a^2+b^2)+a)/2)#
Then:
#d = +-sqrt(c^2-a)#
#= +-sqrt((sqrt(a^2+b^2)+a)/2-a)#
#= +-sqrt((sqrt(a^2+b^2)-a)/2)#
The remaining question is: What signs do we need to choose?
Since
If
If
If
If
#+-((sqrt((sqrt(a^2+b^2)+a)/2)) + (b/abs(b) sqrt((sqrt(a^2+b^2)-a)/2))i)#
Footnote
The question asked what is the square root of
For positive Real numbers
For negative Real numbers
It becomes more complicated when we deal with the square roots of Complex numbers in general.
Consider:
#sqrt(-1/2-sqrt(3)/2i) = +-(1/2-sqrt(3)/2 i)#
Which sign do you prefer?