How do you find the standard form of 2y^2+9x^2=9-x and what kind of a conic is it?

1 Answer
Nov 22, 2016

This is an ellipse, (x+1/18)^2/(2917/2916)+y^2/(2917/648)=1

Explanation:

Let's rewrite the equation

9x^2+2y^2+x-9=0

Compare this to the general equation of the conics

Ax^2+Bxy+Cy^2+Dx+Ey+F=0

Let's calculate the dscriminant,

Delta=B^2-4AC=0-4*9*2=-72

As, #Delta<0, we expect an ellipse

Completing the squares

9(x^2+x/9)+2y^2=9

9(x^2+x/9+(1/18)^2)+2y^2=9+(1/18)^2

9(x+1/18)^2+2y^2=2917/324

(9(x+1/18)^2)/(2917/324)+(2y^2)/(2917/324)=1

(x+1/18)^2/(2917/2916)+y^2/(2917/648)=1

This is the standard equation of the ellipse

the center is (-1/18,0)

graph{9x^2+x+2y^2-9=0 [-4.382, 4.386, -2.19, 2.192]}