How do you find the standard form of 3x212+5y2500=1 and what kind of a conic is it?

1 Answer
Jan 4, 2016

An ellipse.

Explanation:

Simplify the fractions.

x24+y2100=1

This fits the mold for an ellipse, which has the general form

(yk)2a2+(xh)2a2=1

However, the terms at first are switched since a>b for all ellipses, here denoting a vertically oriented ellipse.

Thus, the actual general form is

y2100+x24=1

Here, h=0,k=0,a=10,b=2.

graph{y^2/100+x^2/4=1 [-22.81, 22.8, -11.4, 11.41]}