How do you find the value of #cos ((3pi)/8)# using the double or half angle formula?

1 Answer
Jul 2, 2016

#(2 - sqrt2)/2#

Explanation:

Trig table, unit circle, and property of complementary arcs -->
#cos ((3pi)/8) = cos (-pi/8 + (4pi/8)) = cos (-pi/8 + pi/2) =#
#= sin (pi/8). #
Find sin (pi/8) by using trig identity:
#cos 2a = 1 - 2sin^2 a#
#cos ((2pi)/8) = cos (pi/4) = sqrt2/2 = 1 - 2sin^2 (pi/8)#
#2sin^2 (pi/8) = 1 - sqrt2/2 = (2 - sqrt2)/2#
#sin^2 (pi/8) = (2 - sqrt2)/4#
#sin (pi/8) = sqrt(2 - sqrt2)/2# (because #sin (pi/8)# is positive.
Finally,
#cos ((3pi)/8) = sin (pi/8) = sqrt(2 - sqrt2)/2#