How do you find the vertex and intercepts for f(x)=3x²+12x+4?

1 Answer
Apr 10, 2016

color(blue)("Vertex "->(x,y)->(-2,-8)
color(blue)(y_("intercept")" at "x=0 -> y=4)

color(blue)(x_("intercepts"):
color(green)(x=+-sqrt(24)/3-2" Exact values")

color(green)(x~~3.633" and "-0.367" Approx values")

Explanation:

Given;" "y=3x^2+12x+4

color(blue)(y_("intercept")" at "x=0 -> y=4)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine "y_("intercept") " & Vertex"

Transpose equation into vertex form
Standard form y=ax^2+bx+c
Vertex form y=a(x+b/(2a))^2+c - [(b/2)^2]

y=3(x+2)^2+4 -12

y=3(x+2)^2-8
'~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)(x_("vertex")->(-1)xxb/(2a)" "->" "(-1)xx(2) = -2)

color(blue)(y_("vertex")-> c - [(b/2)^2]" "->" "-8

color(blue)("Vertex "->(x,y)->(-2,-8)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine " x_("intercepts"))

Set " "color(brown)(y=3(x+2)^2-8)" to "color(green)( 3(x+2)^2-8 =0)

(x+2)^2=8/3

Take square roots of both sides

x+2=+-sqrt(8/3)

x= +-sqrt(8/3)-2" " -> sqrt(8)/sqrt(3)xxsqrt(3)/sqrt(3) = sqrt(24)/3

x=+-sqrt(24)/3-2" " Exact values

x~~3.633" and "-0.367