Given;" "y=3x^2+12x+4
color(blue)(y_("intercept")" at "x=0 -> y=4)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine "y_("intercept") " & Vertex"
Transpose equation into vertex form
Standard form y=ax^2+bx+c
Vertex form y=a(x+b/(2a))^2+c - [(b/2)^2]
y=3(x+2)^2+4 -12
y=3(x+2)^2-8
'~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)(x_("vertex")->(-1)xxb/(2a)" "->" "(-1)xx(2) = -2)
color(blue)(y_("vertex")-> c - [(b/2)^2]" "->" "-8
color(blue)("Vertex "->(x,y)->(-2,-8)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine " x_("intercepts"))
Set " "color(brown)(y=3(x+2)^2-8)" to "color(green)( 3(x+2)^2-8 =0)
(x+2)^2=8/3
Take square roots of both sides
x+2=+-sqrt(8/3)
x= +-sqrt(8/3)-2" " -> sqrt(8)/sqrt(3)xxsqrt(3)/sqrt(3) = sqrt(24)/3
x=+-sqrt(24)/3-2" " Exact values
x~~3.633" and "-0.367