How do you find the vertex and intercepts for #f(x)= -4x^2 + 4x + 4#?

1 Answer
Jun 8, 2018

Vertex #(-1/2, 5)#
Y - intercept #(0, 4)#
X-intercept #( (sqrt5+1)/2,0); ((-sqrt5+1)/2,0) #

Explanation:

Given -

#f(x)=-4x^2+4x+4#

#y=-4x^2+4x+4#

Vertex

#x=(-b)/(2a)=(-(4))/(2xx-4)=(-4)/-8=1/2#

At #x=-1/2; y=-4(1/2)^2+4(1/2)+4=-1+2+4=5#

#(1/2, 5)#

At #x=0;y=-4(0)^2+4(0)+4=4#

Y - intercept #(0, 4)#

X-intercept

At #y=0; -4x^2+4x+4=0#

#-4x^2+4x+4=0#

Dividing both sides by #-4#

#x^2-x-1=0#

#x^2-x=1#

#x^2-x+1/4=1+1/4=5/4#

#(x-1/2)^2=5/4)#

#x-1/2=+-sqrt(5/4)=+-sqrt5/2#

#x=sqrt5/2+1/2=(sqrt5+1)/2#

#x=-sqrt5/2+1/2=(-sqrt5+1)/2#