How do you find the vertex and intercepts for #x = –2(y– 3)^2 - 2#?

1 Answer
Mar 29, 2016

Vertex at #(-2,3)#

#x_("intercept")=-20#

Explanation:

Given #x=-2(ycolor(blue)(-3))^2color(magenta)(-2)#

#color(blue)("Solving for vertex")#

As in completing the square for x we have the same scenario but this time in y

#"y-vertex" = (-1)xxcolor(blue)(-3) = +3#

#"x-vertex" = color(magenta)(-2)#

#=>"Vertex"->(x,y)->(-2,3)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Solving for x intercept")#

x intercept @ y=0 giving

#x=-2(y-3)^2-2 -> x=-2(9)-2 = -20#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Solving for y intercept")#

The determinant for #y=(-b+-sqrt(b^2-4ac))/(2a)# Must be positive

#x=-2(y-3)^2-2" "->" "x=-2y^2+12y-20#

Thus the determinant is: #sqrt(12^2-4(-2)(-20)) = sqrt(-16 )#

Thus there are only Complex number roots for x=0

#color(magenta)(y_("intercept") " Does not exist")#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tony B