How do you find the vertex and the intercepts for # f(x) = 1/3(x+5)^2 + 5#?

1 Answer
Aug 26, 2016

Vertex#->(x,y)=(-5,5)#

#y_("intercept") = 13 1/3 ->40/3#

#x_("intercept")= =-5+[sqrt(15)] i" and "x=-5-[sqrt(15)] i#

Explanation:

Set #f(x)=1/3(x+5)^2+5 = y#................Equation(1)

#color(blue)("Determine the vertex")#
The given #y=1/3(x color(green)(+5))^2color(magenta)(+5)# is the vertex form equation.

You can almost directly read off the coordinate of the vertex from it.

#x_("vertex")=(-1)color(green)(xx5) = -5#
#y_("vertex")=color(magenta)(+5)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the y intercept")#

Set #x=0# giving:

#y_("intercept")=1/3(0+5)^2+5 = 13 1/3 ->40/3#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Determine the x intercept")#

From equation(1)

Set #1/3(x+5)^2+5=0#

#=>(x+5)^2=-15#

Square both sides

#x+5=+-sqrt(-15)#

As we have sqrt(-15) the graph does not cross the x-axis

So the only solution to #1/3(x+5)^2+5=0# is in the 'complex number' set of values.

#=>x=-5+-[sqrt(15)] i#

#=>x=-5+[sqrt(15)] i" and "x=-5-[sqrt(15)] i#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Tony B

'