How do you find the vertex and the intercepts for # y=2x^2 + 8x + 5#?

1 Answer
Oct 21, 2017

Vertex: #(-3,-2)#

#x#-intercepts:

#x=-3.2247448713916,\qquad\qquad\qquad x=-0.77525512860841#

#y#-intercept: #(0,5)#

Explanation:

Since the quadratic equation is given in standard form, we can find the vertex and roots using the vertex and quadratic formula.

Standard form is #ax^2+bx+c#. In this case:

#a=2#

#b=8#

#c=5#

The vertex formula for the #x#-coordinate is #-\frac{b}{2a}#

Plugging in yields:

#-\frac{8}{2\cdot 2}#

#=-2#

To find the #y#-coordinate, plug in the #x#-coordinate (#-2#) into the original quadratic equation, in place of #x#:

#2x^2+8x+5#

#\Rightarrow 2(-2)^2+8(-2)+5#

#\Rightarrow 2(4)-16+5#

#\Rightarrow 8-16+5#

#\Rightarrow -3#

Therefore, the vertex is #(-2,-3)#


Now, to find the #x#-intercepts, plug the corresponding #a#, #b#, and #c# values into the quadratic formula

#x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}#

#x=\frac{-8\pm\sqrt{8^2-4(2)(5)}}{2(2)}#

#x=\frac{-8\pm\sqrt{64-40}}{4}#

#x=\frac{-8\pm\sqrt{24}}{4}#

#x=\frac{-8\pm 2\sqrt{6}}{4}#

Splitting #x# up into the plus and minus values:

#x=\frac{-8+2\sqrt{6}}{4},\qquad\qquad\qquad x=\frac{-8-2\sqrt{6}}{4}#

#x=-3.2247448713916,\qquad\qquad\qquadx=-0.77525512860841#

Those are the #x#intercepts.


The #y#-intercept is simply #(0,c)#, or #(0,5)# in this case.

Bada-bing, Bada-boom.