How do you find the vertex of #(x + 6)^2 = -36(y − 3)#?
1 Answer
vertex
Explanation:
1. Expand both sides of the equation.
#(x+6)^2=-36(y-3)#
#x^2+12x+36=-36y+108#
2. Isolate for y.
Recall that general equation for a quadratic equation in standard form is
#x^2+12x+36-108=-36y#
#x^2+12x-72=-36y#
#y=-1/36x^2-1/3x+2#
3. Factor -1/36 from the first two terms.
To find the vertex, we must complete the square. We can do this by first factoring
#y=-1/36(x^2+12x)+2#
4. Rewrite the bracketed terms as a perfect square trinomial.
The value of
#y=-1/36(x^2+12x+((12)/2)^2)+2#
#y=-1/36(x^2+12x+36)+2#
5. Subtract 36 from the perfect square trinomial.
We cannot just add
#y=-1/36(x^2+12x+36# #color(red)(-36))+2#
6. Multiply -36 by -1/36 to move -36 out of the brackets.
#y=-1/36(x^2+12+36)+2(-36)*(-1/36)#
7. Simplify.
#y=-1/36(x^2+12+36)+2[(-color(red)cancelcolor(black)36)*(-1/color(red)cancelcolor(black)36)]#
#y=-1/36(x^2+12+36)+2+1#
#y=-1/36(x^2+12+36)+3#
8. Factor the perfect square trinomial.
The final step to finding the vertex is to factor the perfect square trinomial. This will tell you the
#y=-1/36(x+6)^2+3#