How do you find the zeroes of f (x) =10x^5 + 2x^4 − 75x^3 − 15x^2 + 125x + 25f(x)=10x5+2x475x315x2+125x+25?

1 Answer
Nov 27, 2015

Factor by grouping twice, then use the difference of squares identity twice and hence find zeros:

+-sqrt(10)/2±102, +-sqrt(5)±5, -1/515

Explanation:

The difference of squares identity can be written:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)

Factor by grouping:

f(x) = 10x^5+2x^4-75x^3-15x^2+125x+25f(x)=10x5+2x475x315x2+125x+25

= (10x^5+2x^4)-(75x^3+15x^2)+(125x+25)=(10x5+2x4)(75x3+15x2)+(125x+25)

= 2x^4(5x+1)-15x^2(5x+1)+25(5x+1)=2x4(5x+1)15x2(5x+1)+25(5x+1)

= (2x^4-15x^2+25)(5x+1)=(2x415x2+25)(5x+1)

= (2x^4-10x^2-5x^2+25)(5x+1)=(2x410x25x2+25)(5x+1)

= ((2x^4-10x^2)-(5x^2-25))(5x+1)=((2x410x2)(5x225))(5x+1)

= (2x^2(x^2-5)-5(x^2-5))(5x+1)=(2x2(x25)5(x25))(5x+1)

= (2x^2-5)(x^2-5)(5x+1)=(2x25)(x25)(5x+1)

= ((sqrt(2)x)^2-(sqrt(5))^2)(x^2-(sqrt(5))^2)(5x+1)=((2x)2(5)2)(x2(5)2)(5x+1)

= (sqrt(2)x-sqrt(5))(sqrt(2)x+sqrt(5))(x-sqrt(5))(x+sqrt(5))(5x+1)=(2x5)(2x+5)(x5)(x+5)(5x+1)

Hence f(x)f(x) has zeros for the following values of xx

+-sqrt(5)/sqrt(2) = +-sqrt(10)/2±52=±102

+-sqrt(5)±5

-1/515