How do you find the zeros of f(x) = 2x^3+2x^2-2x-1f(x)=2x3+2x2−2x−1 ?
1 Answer
Use a trigonometric substitution method to find zeros:
x_n = 1/3(4 cos(1/3 cos^(-1)(5/32) + (2npi)/3) - 1)" "xn=13(4cos(13cos−1(532)+2nπ3)−1)
for
Explanation:
f(x) = 2x^3+2x^2-2x-1f(x)=2x3+2x2−2x−1
Rational roots theorem
By the rational roots theorem, any rational zeros of
That means that the only possible rational zeros are:
+-1/2±12 ,+-1±1
None of these work, so
Discriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 16+64+32-108+144 = 148
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=108f(x)=216x^3+216x^2-216x-108
=(6x+2)^3-48(6x+2)-20
=t^3-48t-20
where
Trigonometric substitution
Look for a substitution of the form
4cos^3 theta - 3 cos theta = cos 3 theta
Let
0 = t^3-48t-20
color(white)(0) = k^3 cos^3 theta - 48k cos theta - 20
color(white)(0) = k (k^2 cos^3 theta - 48 cos theta) - 20
Let
0 = 8 (64 cos^3 theta - 48 cos theta) - 20
color(white)(0) = 128 (4 cos^3 theta - 3 cos theta) - 20
color(white)(0) = 128 cos 3 theta - 20
So:
cos 3 theta = 20/128 = 5/32
Hence:
3 theta = +-cos^(-1)(5/32) + 2npi
So:
theta = +-1/3 cos^(-1)(5/32) + (2npi)/3
Note that
t_n = 8 cos (1/3 cos^(-1)(5/32) + (2npi)/3)" " forn = 0, 1, 2
Then
x_n = 1/3(4 cos(1/3 cos^(-1)(5/32) + (2npi)/3) - 1)" " forn = 0, 1, 2