How do you find the zeros of f(x)=7x3+4x2−3x+3?
1 Answer
Use a substitution to get into the form
Explanation:
When a cubic has one irrational Real zero and two non-Real Complex zeros, I like to solve using Cardano's method.
First, I would like to have a cubic with integer coefficients and no square term. To get there from our
1323(7x3+4x2−3x+3)
=9261x3+5292x2−3969x+3969
=(9261x3+5292x2+1008x+64)−(4977x+948)+4853
=(213x3+(3⋅212⋅4)x2+(3⋅21⋅42)x+43)−((237⋅21)x+(237⋅4))+4853
=(21x+4)3−237(21x+4)+4853
=t3−237t+4853
So we want to solve
Next substitute
0=(u+v)3−237(u+v)+4853
=u3+v3+(3uv−237)(u+v)+4853
=u3+v3+3(uv−79)(u+v)+4853
Add the constraint
(u3)2+4853(u3)+493039=0
Use the quadratic formula to find:
u3=−4853±√48532−4⋅1⋅4930392
=−4853±√215794532
=−4853±63√54372
Since the derivation was symmetric in
t1=3√−4853+63√54372+3√−4853−63√54372
and the Complex roots:
t2=ω3√−4853+63√54372+ω23√−4853−63√54372
t3=ω23√−4853+63√54372+ω3√−4853−63√54372
where
Then
x1=121⎛⎝−4+3√−4853+63√54372+3√−4853−63√54372⎞⎠
x2=121⎛⎝−4+ω3√−4853+63√54372+ω23√−4853−63√54372⎞⎠
x3=121⎛⎝−4+ω23√−4853+63√54372+ω3√−4853−63√54372⎞⎠