How do you find the zeros of x^3-x^2-7x+15=0x3−x2−7x+15=0?
1 Answer
Explanation:
By the rational root theorem, any rational zeros of
So the only possible rational zeros are:
+-1±1 ,+-3±3 ,+-5±5 ,+-15±15
Trying each of these in turn, we find:
f(-3) = -27-9+21+15 = 0f(−3)=−27−9+21+15=0
So
x^3-x^2-7x+15 = (x+3)(x^2-4x+5)x3−x2−7x+15=(x+3)(x2−4x+5)
We can factor
a^2-b^2=(a-b)(a+b)a2−b2=(a−b)(a+b)
with
x^2-4x+5 = x^2-4x+4+1 = (x-2)^2-i^2 = (x-2-i)(x-2+i)x2−4x+5=x2−4x+4+1=(x−2)2−i2=(x−2−i)(x−2+i)
Hence zeros:
x = 2+-ix=2±i