How do you graph 2=r cos(θ + 180°)?

1 Answer

it is a vertical Line x=-2

Explanation:

From the given

2=r*cos (theta+180)

2=r*[cos theta cos 180-sin theta sin 180]

2=r*[cos theta(-1)-sin theta (0)]

2=r*(-cos theta-0)

2=-r*cos theta

recall r=sqrt(x^2+y^2) and cos theta=x/sqrt(x^2+y^2)

and the equation becomes

2=-sqrt(x^2+y^2)*x/sqrt(x^2+y^2)

2=-cancelsqrt(x^2+y^2)*x/cancelsqrt(x^2+y^2)

2=-x
and

x=-2" " " a vertical line which is the equivalent of

2=r*cos (theta+180)

graph{y=1000000x+21000000[-10,10,-5,5]}

have a nice day ...from the Philippines!