How do you graph r=2+2sinthetar=2+2sinθ?

1 Answer
Jan 4, 2017

x^2+y^2=4(1+y^2/(x^2+y^2)+2y/sqrt(x^2+y^2))x2+y2=4(1+y2x2+y2+2yx2+y2)

Explanation:

The relation between polar coordinates (r,theta)(r,θ) and Cartesian coordinates (x,y)(x,y) is

x=rcosthetax=rcosθ and y=rsinthetay=rsinθ i.e. r^2=x^2+y^2r2=x2+y2 and y/x=tanthetayx=tanθ

Hence r=2+2sinthetar=2+2sinθ can be written as

sqrt(x^2+y^2)=2(1+sintheta)x2+y2=2(1+sinθ)

or x^2+y^2=4(1+y/sqrt(x^2+y^2))^2x2+y2=4(1+yx2+y2)2

or x^2+y^2=4(1+y^2/(x^2+y^2)+2y/sqrt(x^2+y^2))x2+y2=4(1+y2x2+y2+2yx2+y2)
graph{x^2+y^2=4(1+y^2/(x^2+y^2)+2y/sqrt(x^2+y^2)) [-5.21, 4.79, -0.76, 4.24]}