How do you graph r=2cos2θ?

1 Answer
Jul 15, 2018

Here, the non-negative r[0.2].

The period of cos2θ is 2π2=π.

In one period θ[π2,π2},

r0 for θ[π4,π4] only.

Using,

(x,y)=r(cosθ,sinθ) and r=x2+y20,

the Cartesian form of

r=2cos2θ=2(cos2θsin2θ) is

(x2+y2)1.5=2(x2y2).

The 2-loop Socratic graph is immediate.
graph{(x^2+y^2)^1.5-2(x^2-y^2)=0[-6 6 -3 3]}

Invalid ( r < 0 ) loops are shown below.
graph{(x^2+y^2)^1.5+2(x^2-y^2)=0[-6 6. -3 3]}

Valid and invalid combined graph:
graph{(x^2+y^2)^3-4(x^2-y^2)^2=0[-6 6. -3 3]}