How do you graph r=9cos12θ?

1 Answer
Dec 17, 2016

See explanation to create this fine 12-petal rose.

Explanation:

I have no polar graphic facility . Using, the Socratic Cartesian

graphics, I used

19(x2+y2)6.5

=y12+x1266x2y2(x8+y8)+495x4y4(x4+y4)924x6y6

obtained by conversion, using

cos12θ=cos12θ12C2cos2θsin2θ(cos10θ+sin10θ)+12C4cos4θsin4θ(cos8θ+sin8θ)12C6cos6θsin6θ+sin12θ

Of course, the 12-petal rose should have equi-sized petals that are

9 units long.

The period of r(θ)=9cos12θ is 2π12=π6and

2π=12X(π6), giving 12 petals.

θ size for each petal is π12. For the other half of the period, r<0.

graph{(1/9)(x^2+y^2)^6.5-y^12-x^12+66 x^2 y^2(x^8+y^8)-495 x^4 y^4(x^4+y^4)+924 x^6 y^6=0[-20 20 -10 10] }

For wider loops, change r/9 to r3729.

graph{(1/729)(x^2+y^2)^7.5-y^12-x^12+66 x^2 y^2(x^8+y^8)-495 x^4 y^4(x^4+y^4)+924 x^6 y^6=0[-20 20 -10 10] }

For the use by artists, I added r-negative loops, to get 24 loops.

This is not to be mistaken for 24 r-positive loops of

r=cos24θ.

graph{((1/729)(x^2+y^2)^7.5-y^12-x^12+66 x^2 y^2(x^8+y^8)-495 x^4 y^4(x^4+y^4)+924 x^6 y^6)(-(1/729)(x^2+y^2)^7.5-y^12-x^12+66 x^2 y^2(x^8+y^8)-495 x^4 y^4(x^4+y^4)+924 x^6 y^6)=0[-20 20 -10 10] }