How do you graph the polar equation 2=rcos(theta+60^circ)2=rcos(θ+60)?

1 Answer
Jul 27, 2018

x - sqrt 3 y = 4x3y=4..

Explanation:

Use r = sqrt ( x^2 + y^2 ) >= 0r=x2+y20

and r( cos theta, sin theta ) = ( x, y )andr(cosθ,sinθ)=(x,y)

2 = r (cos theta cos (pi/3) - sin theta sin (pi/3 ))2=r(cosθcos(π3)sinθsin(π3))

= r/sqrt2 ( cos theta - sqrt3 sin theta=r2(cosθ3sinθ) converts to

x - sqrt3 y = 4x3y=4.

Note that the perpendicular form of the polar equation of a straight

line is

r cos (theta - alpha ) = prcos(θα)=p, where

( p, alpha )(p,α) is th foot of the perpendicular to the line, from the

pole r = 0r=0. See graph of the given equation, with the foot of the

perpendicular, with p = 2 and alpha = - pi/3p=2andα=π3.

graph{(x-sqrt 3 y-4)((x-1)^2+(y+sqrt3)^2-0.001)(y+sqrt3 x)=0[0 4 -2 0]}