How do you graph the polar equation r=-2sin3thetar=2sin3θ?

1 Answer
Jul 14, 2018

See graphs of r =+- 2 sin 3thetar=±2sin3θ, to know how to get one from the other, using
r = 2 sin 3(theta + alpha)r=2sin3(θ+α), for anticlockwise rotation through alphaα.

Explanation:

See the anticlockwise rotation, about pole, of the graph of

r = 2 sin 3thetar=2sin3θ, giving the graph of r = -2 sin 3thetar=2sin3θ

r = - 2 sin 3theta = 2 sin (pi + 3theta) = 2 sin (3(theta + pi/3))r=2sin3θ=2sin(π+3θ)=2sin(3(θ+π3))

Formula for

anticlockwise rotation through alphaα of r = f ( theta )r=f(θ)::

r - f ( theta + alpha )rf(θ+α)

Graph of r = - 2 sin 3thetar=2sin3θ:

graph{(x^2+y^2)^2+2(3x^2y-y^3)=0}}

Graph of r = 2 sin 3thetar=2sin3θ :
graph{(x^2+y^2)^2-2(3x^2y-y^3)=0}}

For rotation through +-pi/2±π2, see graphs of r = +- 2 cos 3thetar=±2cos3θ:
Graph of r = - 2 cos 3thetar=2cos3θ:
graph{(x^2+y^2)^2-2(x^3-3xy^2)=0}

Graph of r = 2 cos 3thetar=2cos3θ:
graph{(x^2+y^2)^2+2(x^3-3xy^2)=0}